Abstract

AbstractMetal amides are attractive candidates for hydrogen storage due to their high volumetric and gravimetric hydrogen densities. However, the sluggish kinetics and competing side reactions during hydrogen uptake and release limit their practical use. Here, a novel nanoconfined Li2Mg(NH)2@reduced graphene oxide (rGO) composite is presented, which is fabricated using a melt‐infiltration method with a minimum weight penalty of only 2 wt.%. The presence of rGO ensures close contact between the active phases, effectively preventing aggregation during cycling process. As a result, the reversible capacity of Li2Mg(NH)2@rGO reaches 4.42 wt.%, with no capacity degradation observed after multiple cycling. Theoretical calculations show that rGO catalyzes the hydrogen bond cleavage at the Mg‐amide/Li hydride interface, leading to local dehydrogenation hotspots and significantly improves kinetics of dehydrogenation compared to the bulk counterpart. This study provides a promising strategy for designing metal imide‐based composites to overcome the kinetic limitations and improve their reversible hydrogen storage performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.