Abstract

Abstract Carlin-type gold deposits are one of the most important gold mineralization styles in the world. Despite their economic importance and the large volume of work that has been published, there remain crucial questions regarding their metallogenesis. Much of this uncertainty is due to the cryptic nature of the gold occurrence, with gold occurring as dispersed nanoscale inclusions within host pyrite rims that formed on earlier formed barren pyrite cores. The small size of the gold inclusions has made determining their nature within the host sulfides and the mechanisms by which they precipitated from the ore fluids particularly problematic. This study combines high-resolution electron probe microanalysis (EPMA) with atom probe tomography (APT) to constrain whether the gold occurs as nanospheres or is dispersed within the Carlin pyrites. APT offers the unique capability of obtaining major, minor, trace, and isotopic chemical information at near-atomic spatial resolution. We use this capability to investigate the atomic-scale distribution of trace elements within Carlin-type pyrite rims, as well as the relative differences of sulfur isotopes within the rim and core of gold-hosting pyrite. We show that gold within a sample from the Turquoise Ridge deposit (Nevada) occurs within arsenian pyrite overgrowth (rims) that formed on a pyrite core. Furthermore, this As-rich rim does not contain nanonuggets of gold and instead contains dispersed lattice-bound Au within the pyrite crystal structure. The spatial correlation of gold and arsenic within our samples is consistent with increased local arsenic concentrations that enhanced the ability of arsenian pyrite to host dispersed gold (Kusebauch et al., 2019). We hypothesize that point defects in the lattice induced by the addition of arsenic to the pyrite structure facilitate the dissemination of gold. The lack of gold nanospheres in our study is consistent with previous work showing that dispersed gold in arsenian pyrite can occur in concentrations up to ~1:200 (gold/arsenic). We also report a method for determining the sulfur isotope ratios from atom probe data sets of pyrite (±As) that illustrates a relative change between the pyrite core and its Au and arsenian pyrite rim. This spatial variation confirms that the observed pyrite core-rim structure is due to two-stage growth involving a sedimentary or magmatic-hydrothermal core and hydrothermal rim, as opposed to precipitation from an evolving hydrothermal fluid.

Highlights

  • The Carlin-type gold deposits in Nevada make up one of the largest gold districts in the world (Cline et al, 2005)

  • All of the maps from the Turquoise Ridge sample showed some evidence of oscillatory zoning in the rim, Cortez Hills while the Cortez Hills samples do not show evidence for oscillatory zoning in the rim, or the zoning is too fine to be seen by electron probe microanalysis (EPMA)

  • Understanding the nanoscale nature of Carlin type gold mineralization has been fraught with difficulties, by visualizing the distribution of gold within pyrite at the micro- and nanoscales we can place additional constraints on the formation processes that led to this world-class gold district

Read more

Summary

Introduction

The Carlin-type gold deposits in Nevada make up one of the largest gold districts in the world (Cline et al, 2005). These deposits contain an endowment of ~255 Moz (7,931 tonnes) of gold, of which 89% occurs in four main clusters of deposits, including the Carlin trend, Getchell, Cortez, and Jerritt Canyon (Muntean, 2018). The deposits occur along northnorthwest to south-southeast trends in central Nevada and are characterized by cryptic gold mineralization in host carbonate rocks (Fig. 1). Gold within Carlin-type gold deposit tends to occur as ubiquitous trace element- and Au-rich pyrite rims that formed on unmineralized pyrite cores (Palenik et al, 2004; Barker et al, 2009). Gold can either occur as dispersed lattice-bound Au+ throughout the host crystal structure or form spherical inclusions of Au0 within

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call