Abstract

Many studies have shown that dropwise condensation can enhance air-side heat transfer coefficients by at least an order of magnitude relative to filmwise condensation. However, among the hundreds of superhydrophobic surface-modification processes previously reported, there remains a lack of coating methods that enable stable dropwise condensation and can be applied to aluminum—by far the most common material for the air side of heat exchangers, e.g. in air conditioning. Here we present a bottom-up synthesis technique to grow zinc oxide-based films on to aluminum with tunable nanoporosity and strongly re-entrant surface features. These surfaces exhibit exceptional static water contact angles of up to 178° with a hysteresis less than 3° and a slide angle of 1°. We have further characterized the surfaces in the presence of six different liquids, and show that our optimal surface can repel even dipropylene glycol with a contact angle of 124°, even though its surface tension is less than half that of water. Crucially, we have also tested our films under water-condensing conditions in flowing air, characterizing the droplet-shedding behavior, and we have understood how to tune the growth process to deliver stable droplet-shedding instead of flooding. The process uses inexpensive reagents, can operate below 100 °C via immersion in an aqueous bath, and takes 1–3 h to complete, making it readily scalable to areas of many square meters and complex geometries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call