Abstract

So far, the development of highly active and stable carbon-based electrocatalysts for oxygen reduction reaction (ORR) to replace commercial Pt/C catalyst is a hot topic. In this study, a new nanoporous nitrogen-doped carbon material was facilely designed by two-step pyrolysis of the renewable Lemna minor enriched in crude protein under a nitrogen atmosphere. Electrochemical measurements show that the onset potential for ORR on this carbon material is around 0.93 V (versus reversible hydrogen electrode), slightly lower than that on the Pt/C catalyst, but its cycling stability is higher compared to the Pt/C catalyst in an alkaline medium. Besides, the ORR at this catalyst approaches to a four-electron transfer pathway. The obtained ORR performance can be basically attributed to the formation of high contents of pyridinic and graphitic nitrogen atoms inside this catalyst. Thus, this work opens up the path in the ORR catalysis for the design of nitrogen-doped carbon materials utilizing aquatic plants as starting precursors.

Highlights

  • The increasing environmental pollution and depletion of fossil fuels have obliged peoples to develop green and clean energy sources

  • The XP N1s spectrum of the CDW-300 precursor can be deconvoluted into three peaks, which are attributed to pyridinic, nitrile, and pyrrolic nitrogen atoms, respectively, in the carbon lattice [23]

  • A certain ratio (19.0 at.%) of the graphitic nitrogen atom is produced, which obviously displays that the heat-treatment process at 700 °C causes the rapid decomposition of the nitrile and pyrrolic nitrogen atoms owing to their instability [25]

Read more

Summary

Introduction

The increasing environmental pollution and depletion of fossil fuels have obliged peoples to develop green and clean energy sources. The fuel cell technology is considered as a very promising energy-conversion device all the time, because it possesses high-efficiency and environment-friendly characteristics [1]. One of the main factors that hinder the commercialization of fuel cells is sluggish reaction kinetics of cathode oxygen reduction reaction (ORR) [2–4]. Noble-metal Pt-based materials are unanimously thought as the state-of-the-art ORR catalysts [5]. Nitrogen-doped carbon materials with different morphologies, including N-doped graphene [11], N-doped carbon nanotube [12], N-doped carbon sphere [13], and N-doped carbon nanoweb [14, 15] were rapidly developed as effective ORR catalysts in various electrolytes. 2D sandwich-like zeolitic imidazolate framework (ZIF)-derived graphene-based nitrogen-doped porous carbon sheets (GNPCS ) were obtained by in situ growing ZIF on graphene oxide [16]. Compared to the commercial Pt/C catalyst, the GNPCSs show comparable onset

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.