Abstract
Modern nanodrug delivery technologies offer new approaches in the fight against cancer. However, due to the heterogeneity of tumors and side effects of anticancer drugs, monotherapies are less effective. Herein, we report a novel pH and light dual-responsive nanodrug delivery platform. The platform was formed by sulfonate-modified gold nanoparticles loaded with the anticancer drugs doxorubicin (DOX) and glucose oxidase (GOx) and then covered by water-soluble pillar[5]arene as a nanovalve. The nanovalve formed by the host-guest interaction between pillar[5]arene and the sulfonic acid group grafted onto the gold nanoparticle increased the drug loading capacity of the nanoplatform and enabled sustained release of the drug in a simulated weakly acidic tumor environment. The released GOx can consume intracellular glucose, namely, starvation therapy, while the generated hydrogen peroxide can further kill tumor cells, complementing DOX chemotherapy. Gold nanoparticles have good photothermal conversion ability and can enhance the drugs release rate under specific wavelengths of light irradiation. The results of in vitro and in vivo experiments showed that this novel nanodrug delivery platform has good biocompatibility and better therapeutic efficacy relative to monotherapy. This study successfully developed a combined chemo/starvation therapy strategy with good tumor suppression, providing a new approach for cancer treatment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.