Abstract

Magnetic and gold coated magnetic nanoparticles were synthesized by co-precipitation of ferrous and ferric chlorides, and by the micromicelles method, respectively. Synthesized nanoparticles were functionalized to bear carboxyl and amino acid moieties and used as prion protein carriers after carbodiimide activation in the presence of N-hydroxysuccinimide. The binding of human recombinant prion protein (huPrPrec) to the surface of these nanoparticles was confirmed by FTIR and the size and structures of the particles were characterized by transmission electron microscopy. Findings indicate that the rate of prion binding increased only slightly when the concentration of prion in the reaction medium was increased. Rate constants of binding were very similar on Fe3O4@Au and Fe3O4-LAA when the concentrations of protein were 1, 2, 1.5, 2.25 and 3.57 μg/ml. For a 5 μg/ml concentration of huPrPrec the binding rate constant was higher for the Fe3O4-LAA particles. This study paves the way towards the formation of prion protein complexes onto a 3-dimensional structure that could reveal obscure physiological and pathological structure and prion protein kinetics.

Highlights

  • Prion diseases called Transmissible Spongiform Encephalopathies (TSE) are a group of degenerative diseases that feature the pronounced accumulation, in certain brain regions, of a misfolded isomer PrPsc of the cellular prion protein (PrPc) [1,2,3]

  • Spongiform encephalopathy in cattle, scrapie in sheep, Gerstmann-Straussler Scheinker in human, and Creutzfied-Jacob disease are caused due to the misfolding of protein denoted as prion protein [1,2,3,4]

  • We report the kinetics of binding of prion protein to magnetic and gold coated magnetic nanoparticles, after modification of the surface chemistries of these materials

Read more

Summary

Introduction

Prion diseases called Transmissible Spongiform Encephalopathies (TSE) are a group of degenerative diseases that feature the pronounced accumulation, in certain brain regions, of a misfolded isomer PrPsc of the cellular prion protein (PrPc) [1,2,3]. Spongiform encephalopathy in cattle, scrapie in sheep, Gerstmann-Straussler Scheinker in human, and Creutzfied-Jacob disease are caused due to the misfolding of protein denoted as prion protein [1,2,3,4]. Understanding the basis of prion disease revolves around understanding how the normal protein, PrPc is converted into its abnormal form, PrPsc. Hypothesis suggest that prion infection is associated with a conformational transition between the two forms [1,2,3,4,5]. Cui et al [6] and Spencer et al [7] proposed that this conversion involves a switch in the conformation from a structure rich in α-helix to the one rich in β-sheet through a spatial arrangement and molecule folding

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.