Abstract

Self-driven photodetectors are essential for many applications where it is unpractical to provide or replace power sources. Here, we report a new device architecture for self-driven photodetectors with tunable asymmetric Schottky junctions based on a nanomesh electrode. The vertical-channel nanomesh scaffold is composed of a hexagonally ordered nanoelectrode array fabricated via the nanosphere lithography technique. The top and bottom nanoelectrodes are separated by only 30 nm and the areal ratio of the two nanoelectrodes can be fine-tuned, which effectively modifies the geometric asymmetricity of the Schottky junctions in the photodetector devices. The self-driven photodetectors are fabricated by depositing the (FAPbI3)0.97(MAPbBr3)0.03 (MA = methylammonium, FA = formamidinium) perovskite films onto the nanomesh electrodes. Under the self-driven mode, the optimized device demonstrates a high detectivity of 1.05 × 1011 Jones and a large on/off ratio of 2.1 × 103. This nanomesh electrode is very versatile and can be employed to investigate the optoelectronic properties of various semiconducting materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.