Abstract
Nanomechanical resonators have been used to weigh cells, biomolecules and gas molecules, and to study basic phenomena in surface science, such as phase transitions and diffusion. These experiments all rely on the ability of nanomechanical mass sensors to resolve small masses. Here, we report mass sensing experiments with a resolution of 1.7yg (1yg=10(-24)g), which corresponds to the mass of one proton. The resonator is a carbon nanotube of length ∼150nm that vibrates at a frequency of almost 2GHz. This unprecedented level of sensitivity allows us to detect adsorption events of naphthalene molecules (C(10)H(8)), and to measure the binding energy of a xenon atom on the nanotube surface. These ultrasensitive nanotube resonators could have applications in mass spectrometry, magnetometry and surface science.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.