Abstract
The global emergency caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic can only be solved with effective and widespread preventive and therapeutic strategies, and both are still insufficient. Here, we describe an ultrathin two-dimensional CuInP2S6 (CIPS) nanosheet as a new agent against SARS-CoV-2 infection. CIPS exhibits an extremely high and selective binding capacity (dissociation constant (KD) < 1 pM) for the receptor binding domain of the spike protein of wild-type SARS-CoV-2 and its variants of concern, including Delta and Omicron, inhibiting virus entry and infection in angiotensin converting enzyme 2 (ACE2)-bearing cells, human airway epithelial organoids and human ACE2-transgenic mice. On association with CIPS, the virus is quickly phagocytosed and eliminated by macrophages, suggesting that CIPS could be successfully used to capture and facilitate virus elimination by the host. Thus, we propose CIPS as a promising nanodrug for future safe and effective anti-SARS-CoV-2 therapy, and as a decontamination agent and surface-coating material to reduce SARS-CoV-2 infectivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.