Abstract

In this case study, we demonstrate the feasibility of nanomaterial-based sensors for identifying the breath-print of early-stage lung cancer (LC) and for short-term follow-up after LC-resection. Breath samples were collected from a small patient cohort prior to and after lung resection. Gas-chromatography/mass-spectrometry showed that five volatile organic compounds were significantly reduced after LC surgery. A nanomaterial-based sensor-array distinguished between pre-surgery and post-surgery LC states, as well as between pre-surgery LC and benign states. In contrast, the same sensor-array could neither distinguish between pre-surgery and post-surgery benign states, nor between LC and benign states after surgery. This indicates that the observed pattern is associated with the presence of malignant lung tumors. The proof-of-concept presented here has initiated a large-scale clinical study for post-surgery follow-up of LC patients. From the Clinical EditorMonitoring for tumor recurrence remains very challenging due to post-surgical and radiation therapy induced changes in target organs, which often renders standard radiological identification of recurrent malignancies inaccurate. In this paper a novel nanotechnology-based sensor array is used for identification of volatile organic compounds in exhaled air that enable identification of benign vs. malignant states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.