Abstract

Theranostic nanoplatforms with accurate diagnosis and effective therapy show a bright prospect for tumor treatments. Herein, a novel boracic acid-modified graphite carbon nitride and Prussian blue nanohybrid (PB@B-g-C3N4) was developed, which provides sialic acid-targeted Raman recognition and synergistic photothermal/photodynamic therapy in the near-infrared region. Owing to the specific interaction between boracic acid and sialic acid and Raman response at 2157 cm−1 of PB, the nanohybrids exhibit high specificity and Raman sensitivity for detection of the overexpressed sialic acid on tumor cells. Moreover, the photothermal conversion efficiency of PB@B-g-C3N4 is as high as 47.0% with 808 nm laser irradiation due to the enhanced absorbance of PB@B-g-C3N4. PB@B-g-C3N4 also possesses excellent photodynamic activity, which is attributed to the energy transfer of PB (type I) and electron transfer between PB and B-g-C3N4 (type II). This nanotheranostic agent for Raman recognition of cancer markers and synergistic photothermal/photodynamic therapy holds great potential for the development of efficient theranostic nanoplatforms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.