Abstract

An electrochemical sensor for paracetamol is described that consists of a glassy carbon electrode (GCE) that was modified with the conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT) doped with MnO2 nanoflowers. The hydrothermally synthesized MnO2 nanoflowers possess a large surface area and can be doped into PEDOT through electrochemical deposition to form a conducting polymer nanocomposite. The nanoflowers are shown to be uniformly distributed within the nanocomposite as revealed by elemental mapping analysis. The nanocomposite displays excellent catalytic activity toward the electrochemical oxidation of paracetamol. The modified GCE, best operated at a working potential of around 0.37 V (vs. SCE) has a linear response in 0.06 to 435μM paracetamol concentration range and a very low limit of detection (31nM at a signal-to-noise ratio of 3). The sensor exhibits excellent reproducibility and stability, and satisfying accuracy for paracetamol detection in pharmaceutical samples. Graphical abstract A highly sensitive electrochemical sensor capable of detecting paracetamol with a limit of detection down to 31nM was developed based on MnO2 nanoflowers doped conducting polymer PEDOT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call