Abstract

IntroductionAberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion. Frequently however, evidence is circumstantial, and a reliable assessment of the therapeutic significance of a gene product is offset by lack of inhibitors that target biologic properties of a protein, as most conventional drugs do, instead of the corresponding gene. Proteomic studies have demonstrated overexpression of CapG, a constituent of the actin cytoskeleton, in breast cancer. Indirect evidence suggests that CapG is involved in tumor cell dissemination and metastasis. In this study, we used llama-derived CapG single-domain antibodies or nanobodies in a breast cancer metastasis model to address whether inhibition of CapG activity holds therapeutic merit.MethodsWe raised single-domain antibodies (nanobodies) against human CapG and used these as intrabodies (immunomodulation) after lentiviral transduction of breast cancer cells. Functional characterization of nanobodies was performed to identify which biochemical properties of CapG are perturbed. Orthotopic and tail vein in vivo models of metastasis in nude mice were used to assess cancer cell spreading.ResultsWith G-actin and F-actin binding assays, we identified a CapG nanobody that binds with nanomolar affinity to the first CapG domain. Consequently, CapG interaction with actin monomers or actin filaments is blocked. Intracellular delocalization experiments demonstrated that the nanobody interacts with CapG in the cytoplasmic environment. Expression of the nanobody in breast cancer cells restrained cell migration and Matrigel invasion. Notably, the nanobody prevented formation of lung metastatic lesions in orthotopic xenograft and tail-vein models of metastasis in immunodeficient mice. We showed that CapG nanobodies can be delivered into cancer cells by using bacteria harboring a type III protein secretion system (T3SS).ConclusionsCapG inhibition strongly reduces breast cancer metastasis. A nanobody-based approach offers a fast track for gauging the therapeutic merit of drug targets. Mapping of the nanobody-CapG interface may provide a platform for rational design of pharmacologic compounds.

Highlights

  • Aberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion

  • CAPNb2 interaction with the first CapG domain inhibits G-actin binding and F-actin capping After immunization of a llama with human recombinant CapG, several CapG nanobodies (CAPNb) were obtained

  • In Western blot experiments, several nanobodies belonging to different classes recognized a ~40-kDa protein, corresponding to CapG, present in protein extracts obtained from MDA-MB-231 breast cancer cells

Read more

Summary

Introduction

Aberrant turnover of the actin cytoskeleton is intimately associated with cancer cell migration and invasion. As in many other research areas, actin-regulating proteins are being proposed as new potential targets for drug development at a swift pace. Such targets include factors that promote actin polymerization, such as Arp2/3 and formin [2] or the actin-bundling proteins fascin, filamin-A, and Mena [3], to mention only a few. Proteins residing in structures like invadopodia (N-WASp, cortactin) [4], or filopodia (Ena/VASP proteins) [5] are considered to be possible targets of interest These structures contribute to cell-membrane protrusion and/or enhanced focal metalloprotease activity, leading to local degradation of the extracellular matrix, with ensuing invasion of the surrounding tissue. Cytoskeletal components may constitute a plentiful source of potential targets for further therapeutic development

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.