Abstract

LC/MS analysis of ribonucleosides is traditionally performed by reverse phase chromatography on silica based C18 type stationary phases using MS compatible buffers and methanol or acetonitrile gradients. Due to the hydrophilic and polar nature of nucleosides, down-scaling C18 analytical methods to a two-column nano-flow setup is inherently difficult. We present a nano-chip LC/MS ion-trap strategy for routine characterization of RNA nucleosides in the fmol range. Nucleosides were analyzed in positive ion mode by reverse phase chromatography using a 75 μ × 150 mm, 5 μ particle porous graphitic carbon (PGC) chip with an integrated 9 mm, 160 nL trapping column. Nucleosides were separated using a formic acid/acetonitrile gradient. The method was able to separate isobaric nucleosides as well as nucleosides with isotopic overlap to allow unambiguous MS( n ) identification on a low resolution ion-trap. Synthesis of 5-hydroxycytidine (oh(5)C) was achieved from 5-hydroxyuracil in a novel three-step enzymatic process. When operated in its native state using formic acid/acetonitrile, PGC oxidized oh(5)C to its corresponding glycols and formic acid conjugates. Reduction of the PGC stationary phase was achieved by flushing the chip with 2.5 mM oxalic acid and adding 1 mM oxalic acid to the online solvents. Analyzed under reduced chromatographic conditions oh(5)C was readily identified by its MH(+) m/z 260 and MS(n) fragmentation pattern. This investigation is, to our knowledge, the first instance where oxalic acid has been used as an online reducing agent for LC/MS. The method was subsequently used for complete characterization of nucleosides found in tRNAs using both PGC and C18 chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.