Abstract
We have used synthetic pseudosubstrate peptide inhibitors of protein kinase C (PKC) to re-examine the role of conventional isoforms of PKC in the insulin secretory response of intact rat islets of Langerhans to glucose and to the cholinergic agonist carbachol (CCh). One peptide was modified by N-terminal myristoylation (PKC-myr 20–28) to allow its use in intact β-cells. Maximal inhibition of PKC activity in vitro required 10-fold less of this peptide (PKC-myr 20–28) than of its non-myristoylated analogue. The maximum inhibitory concentration of PKC-myr 20–28 had little effect on islet protein kinase A or Ca 2+ calmodulin kinase activities. PKC-myr 20–28 (25–100 μM) caused a dose-dependent inhibition of phorbol myristate acetate (PMA)-induced insulin secretion from intact rat islets but non-myristoylated peptides had little effect on the secretory response to PMA. A concentration of PKC-myr 20–28 (100 μM) which maximally inhibited PMA-induced insulin secretion, also inhibited the secretory response to CCh, but did not affect glucose-stimulated insulin secretion from intact islets. These results indicate that myristoylation of pseudosubstrate peptides increases their potency as inhibitors and that PKC-myr 20–28 is a selective and cell-permeant inhibitor of PMA-sensitive isoforms of PKC. They also suggest that the activation of PMA-sensitive PKC isoforms mediates the stimulatory effects of CCh, but is not obligatory for glucose-induced insulin secretion from pancreatic β-cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.