Abstract
Distributed market structures for local, transactive energy trading can be modeled with ecological systems, such as mycorrhizal networks, which have evolved to facilitate interplant carbon exchange in forest ecosystems. However, the complexity of these ecological systems can make it challenging to understand the effect that adopting these models could have on distributed energy systems and the magnitude of associated performance parameters. We therefore simplified and implemented a previously developed blueprint for mycorrhizal energy market models to isolate the effect of the mycorrhizal intervention in allowing buildings to redistribute portions of energy assets on competing local, decentralized marketplaces. Results indicate that the applied mycorrhizal intervention only minimally affects market and building performance indicators—increasing market self-consumption, decreasing market self-sufficiency, and decreasing building weekly savings across all seasonal (winter, fall, summer) and typological (residential, mixed-use) cases when compared to a fixed, retail feed-in-tariff market structure. The work concludes with a discussion of opportunities for further expansion of the proposed mycorrhizal market framework through reinforcement learning as well as limitations and policy recommendations considering emerging aggregated distributed energy resource (DER) access to wholesale energy markets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.