Abstract

Wireless Sensor Networks (WSNs) are composed of small wireless nodes equipped with sensors, a processor, and a radio communication unit, all normally powered by batteries. For most WSN applications, the network is expected to function for several months or years. In the common monitoring application scenario, adjacent nodes in a WSN often sense spatially correlated data. Suppressing this correlation can significantly improve the lifetime of the network. The maximum possible network data compression can be achieved using distributed source coding (DSC) techniques when nodes encode at Slepian-Wolf rates. This paper presents contributions to the lifetime optimization problem of WSNs in the form of two algorithms: the Updated-CMAX (UCMAX) power-aware routing algorithm to optimize the routing tree and the Rate Optimization (RO) algorithm to optimize the encoding rates of the nodes. The two algorithms combined offer a solution that maximizes the lifetime of a WSN measuring spatially correlated data. Simulations show that our proposed approach may significantly extend the lifetime of multihop WSNs with nodes that are observing correlated data.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.