Abstract

Mutations in SEPN1 result in a spectrum of early-onset muscle disorders referred to as SEPN1-related myopathy. The SEPN1 gene encodes selenoprotein N (SelN), which contains the amino acid selenocysteine (Sec). Incorporation of Sec occurs due to redefinition of a UGA codon during translation. Efficient insertion requires a Sec insertion sequence (SECIS) in the 3'UTR and, for at least a subset of selenoprotein genes, a Sec redefinition element (SRE) located adjacent to the UGA codon. We report the effect of three novel and one previously reported point mutation in the SelN SRE element on Sec insertion efficiency. Notably, the previously reported mutation c.1397G>A (p.R466Q), which weakens the secondary structure of the SRE element, reduces Sec insertion efficiency and SelN RNA levels. Muscle from patients with this mutation have negligible levels of SelN protein. This data highlights the importance of the SRE element during SelN expression and illustrates a novel molecular mechanism by which point mutations may lead to SEPN1-related myopathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call