Abstract

The acaricidal compounds pyridaben, tebufenpyrad and fenpyroximate are frequently used in the control of phytophagous mites such as Tetranychus urticae, and are referred to as Mitochondrial Electron Transport Inhibitors, acting at the quinone binding pocket of complex I (METI-I acaricides). Because of their very frequent use, resistance evolved fast more than 20 years ago, and is currently wide-spread. Increased activity of P450 monooxygenases has been often associated with resistance, but target-site based resistance mechanisms were never reported.Here, we report the discovery of a mutation (H92R) in the PSST homologue of complex I in METI-I resistant T. urticae strains. The position of the mutation was studied using the high-resolution crystal structure of Thermus thermophilus, and was located in a stretch of amino acids previously photo-affinity labeled by fenpyroximate. Selection experiments with a strain segregating for the mutant allele, together with marker-assisted back-crossing of the mutation in a susceptible background, confirmed the involvement of the mutation in METI-I resistance. Additionally, an independent genetic mapping approach; QTL analysis identified the genomic region of pyridaben resistance, which included the PSST gene. Last, we used CRISPR-Cas9 genome editing tools to introduce the mutation in the Drosophila PSST homologue.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.