Abstract

We propose a rapid chemical strategy for identifying base pairs in structured nucleic acid systems. The approach goes beyond traditional chemical mapping approaches by monitoring perturbations of each residue's chemical accessibility in response to systematic mutagenesis of residues that are distant in sequence but nearby in three dimensions. As a proof of concept, we present high-throughput dimethyl sulfate accessibility data for a chimeric DNA/RNA system in which every possible sequence variation and deletion in a 20 bp region has been synthesized and tested. The data demonstrate that 88% of the system's base pairs can be robustly inferred, with A/A and T/C DNA/RNA mismatches giving the strongest signals. These results point to the feasibility of rapid base pair inference in larger and more complex nucleic acid systems with unknown structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.