Abstract
In order to generate a mutant of Bacillus subtilis with enhanced surface activity through low energy nitrogen ion beam implantation, the effects of energy and dose of ions implanted were studied. The morphological changes in the bacteria were observed by scanning electron microscope (SEM). The optimum condition of ions implantation, 20 keV of energy and 2.6×1015N+/cm2 in dose, was determined. A mutant, B.s-E-8 was obtained, whose surface activity of 50-fold and 100-fold diluted cell-free Landy medium was as 5.6-fold and 17.4-fold as the wild strain. The microbial growth and biosurfactant production of both the mutant and the wild strain were compared. After purified by ultrafiltration and SOURCE 15PHE, the biosurfactant was determined to be a complex of surfactin family through analysis of electrospray ionization mass spectrum (ESI/MS) and there was an interesting finding that after the ion beam implantation the intensities of the components were different from the wild type strain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.