Abstract

Graphene oxide (GO) with one-atom-thick exhibit remarkable molecule sieving properties, but its low permeance flux renders it difficult to be applied in practice as a high-permeance separation membrane. In this study, we design complex membrane from covalently crosslinked GO, polydopamine (PDA), and 3-aminopropytriethoxysilane (APTES) as building blocks to fabricate the high-permeance GO-based membrane via the vacuum filtration method. A branched crosslinking product (PDA/APTES) working as a clamp grasped the hydrophilic functional groups (hydroxyl, epoxy, carboxyl) on GO for improving the GO membrane flux. The interlayer structure of the GO membrane was optimized according to the crosslinker concentration, reaction time, initial pH, and temperature for RGO/PDA/APTES (RGPA) in this study. At the optimized reaction conditions including the crosslinker concentration of 1.4 mL/L, the temperature of 80 °C, the time of 16 h, and the initial pH of 8.5 for RGPA mixture, the interlayer gallery of RGPA membrane was effectively tunes, endowing high flux ranging from 11.98 L m−2 h−1 to 1823.97 L m−2 h−1. Besides, the RGPA membrane ensured the high rejections to dye solutions such as methylene blue (MB) (>99%) and congo red (CR) (>90%). Meanwhile, the superior reusable performance of the RGPA membrane was achieved, together with the rejections for MB and CR to 96.32% and 93.1% after 4 cycles, respectively. Also, the RGPA membrane possessed superior anti-fouling performances for bovine serum albumin (BSA) aqueous solution and excellent stabilities in harsh conditions (pH 3, 7 and 11). Grafting the crosslinker onto GO nanosheets exhibits the distinct advantages of achieving the high flux, high rejections to dyes, and superior reusable performance of membranes, posing a great application potential for membrane separation technology in wastewater treatment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call