Abstract

In this paper, a new model for MEPDN (multiyear expansion planning of distribution networks) is proposed. By solving this model, the optimal expansion scheme of primary (i.e. medium voltage) distribution network including the reinforcement pattern of primary feeders as well as location and size of DG (distributed generators) during an ascertained planning period is determined. Furthermore, the time-based feature of proposed model allows it to specify the investments/reinforcements time (i.e. year). Moreover, a minimum load shedding-based analytical approach for optimizing the network's reliability is introduced. The associated objective function of proposed model is minimizing the total investment and operation costs. To solve the formulated MEPDN model as a complex multi-dimensional optimization problem, a new evolutionary algorithm-based solution method called BCSSO (Binary Chaotic Shark Smell Optimization) is presented. The effectiveness of the proposed MEPDN model and solution approach is illustrated by applying them on two widely-used test cases including 12-bus and 33-bus distribution network and comparing the acquired results with the results of other solution methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.