Abstract

This study contains a comparative analysis of aerosol optical thickness (AOT) between numerical calculations obtained from the Navy Aerosol Analysis and Prediction System (NAAPS) model and direct observations from the AERONET robotic network and the Saharan Aerosol over WArsaw (SAWA) field campaign. AOT was calculated for 500 nm wavelength. The comparison shows underestimation of the total aerosol optical thickness simulated by NAAPS. The correlation coefficients between model and observation oscillates between 0.57 and 0.72. Results of seven-year (1998–2004) NAAPS simulation of aerosol components (sea salt, mineral dust, sulphate, and smoke) show large temporal and spatial variability of the aerosol optical thickness over Europe. The least polluted region is the Iberian Peninsula, while the highest aerosol burdens occurred in Central Europe, mostly due to anthropogenic sulphate particles. Finally, the analysis of mineral dust transport shows frequent episodes of Saharan dust inflow over Central Europe. There are about 20 days a year (4 days in May) when instantaneous AOT associated with mineral dust aerosol increases over 0.1.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call