Abstract

We take a multivariate view of digital search trees by studying the number of nodes of different types that may coexist in a bucket digital search tree as it grows under an arbitrary memory management system. We obtain the mean of each type of node, as well as the entire covariance matrix between types, whereupon weak laws of large numbers follow from the orders of magnitude (the norming constants include oscillating functions). The result can be easily interpreted for practical systems like paging, heaps and UNIX's buddy system. The covariance results call for developing a Mellin convolution method, where convoluted numerical sequences are handled by convolutions of their Mellin transforms. Furthermore, we use a method of moments to show that the distribution is asymptotically normal. The method of proof is of some generality and is applicable to other parameters like path length and size in random tries and Patricia tries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.