Abstract

Abstract An affine-invariant signed-rank test is proposed for the one-sample multivariate location problem. The test suggested is a modification of Randles's multivariate sign test based on interdirections, which extends Blumen's bivariate procedure to the multidimensional setting. Comparisons are made between the proposed statistic and several competitors via Pitman asymptotic relative efficiencies and Monte Carlo results. The signed-rank statistic appears to be robust. It performs better than its competitors when the distribution is light-tailed, and virtually as well as Hotelling's T 2 under multivariate normality. For heavy-tailed distributions the signed-rank statistic performs better than Hotelling's T 2 but not as well as Randles's statistic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.