Abstract
This paper describes a multivariate Poisson mixture model for clustering supermarket shoppers based on their purchase frequency in a set of product categories. The multivariate nature of the model accounts for cross‐selling effects between the purchases made in different product categories. However, for computational reasons, most multivariate approaches limit the covariance structure by including just one common interaction term, or by not including any covariance at all. Although this reduces the number of parameters significantly, it is often too simplistic as typically multiple interactions exist on different levels. This paper proposes a theoretically more complete variance/covariance structure of the multivariate Poisson model, based on domain knowledge or preliminary statistical analysis of significant purchase interaction effects in the data. Consequently, the model does not contain more parameters than necessary, whilst still accounting for the existing covariance in the data. Practically, retail category managers can use the model to devise customized merchandising strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.