Abstract

ABSTRACTThe fact of estimating how a model output is influenced by the variations of inputs has become an important problematic in reliability and sensitivity analysis. This article is interested in estimating sensitivity indices useful to quantify the contribution of inputs to the variance of model output. A multivariate mixed kernel estimator is investigated since, until now, discrete and continuous inputs have been separately considered in kernel estimation of sensitivity indices. To illustrate the differences between the influence of mixed, discrete, and continuous inputs, analytical expressions of Sobol sensitivity indices are expressed in these three cases for the Ishigami test function. Besides, the performance of the mixed kernel estimator is illustrated through simulations in which the Bayesian procedure is applied for bandwidth parameter choice. An application is also realized on a real example. Finally, the use of an appropriate kernel estimator according to the type of inputs is found to be influential on the accuracy of sensitivity indices estimates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.