Abstract
We define a multivariate polynomial that generalizes in a unified way the two-variable interlace polynomial defined by Arratia, Bollobás and Sorkin on the one hand, and a one-variable variant of it defined by Aigner and van der Holst on the other. We determine a recursive definition for our polynomial that is based on local complementation and pivoting like the recursive definitions of Tutte's polynomial and of its multivariate generalizations are based on edge deletions and contractions. We also show that bounded portions of our polynomial can be evaluated in polynomial time for graphs of bounded clique-width. Our proof uses an expression of the interlace polynomial in monadic second-order logic, and works actually for every polynomial expressed in monadic second-order logic in a similar way.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.