Abstract

ABSTRACT Dementia patients exhibit considerable heterogeneity in individual trajectories of cognitive decline, with some patients showing rapid decline following diagnoses while others exhibiting slower decline or remaining stable for several years. Dementia studies often collect longitudinal measures of multiple neuropsychological tests aimed to measure patients’ decline across a number of cognitive domains. We propose a multivariate finite mixture latent trajectory model to identify distinct longitudinal patterns of cognitive decline simultaneously in multiple cognitive domains, each of which is measured by multiple neuropsychological tests. EM algorithm is used for parameter estimation and posterior probabilities are used to predict latent class membership. We present results of a simulation study demonstrating adequate performance of our proposed approach and apply our model to the Uniform Data Set from the National Alzheimer's Coordinating Center to identify cognitive decline patterns among dementia patients.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.