Abstract

This paper proposes a multivariate distance nonlinear causality test (MDNC) using the partial distance correlation in a time series framework. Partial distance correlation as an extension of the Brownian distance correlation calculates the distance correlation between random vectors X and Y controlling for a random vector Z. Our test can detect nonlinear lagged relationships between time series, and when integrated with machine learning methods it can improve the forecasting power. We apply our method as a feature selection procedure and combine it with the support vector machine and random forests algorithms to study the forecast of the main energy financial time series (oil, coal, and natural gas futures). It shows substantial improvement in forecasting the fuel energy time series in comparison to the classical Granger causality method in time series.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.