Abstract

The probabilistic damage tolerance analysis of aeroengine rotor disks is essential for determining if the disk is safe. To calculate the probability of failure, the numerical integration method is efficient if the integral formula of the probability density function is known. However, obtaining an accurate integral formula for aeroengine disks is generally complicated due to their complex failure mechanism. This article proposes a multivariable numerical integral method for calculating the probability of failure. Three random variables (initial defect length a, life scatter factor S, and stress scatter factor B) are considered. A compressor disk model is evaluated. The convergence, efficiency, and accuracy of the proposed method are compared with the Monte Carlo simulation and importance sampling method. The results show that the integral-based method is 100 times more efficient under the same convergence and accuracy conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call