Abstract
<p><span>Mining frequent itemsets is an area of data mining that has beguiled several researchers in recent years. Varied data structures such as Nodesets, DiffNodesets, NegNodesets, N-lists, and Diffsets are among a few that were employed to extract frequent items. However, most of these approaches fell short either in respect of run time or memory. Hybrid frameworks were formulated to repress these issues that encompass the deployment of two or more data structures to facilitate effective mining of frequent itemsets. Such an approach aims to exploit the advantages of either of the data structures while mitigating the problems of relying on either of them alone. However, limited efforts have been made to reinforce the efficiency of such frameworks. To address these issues this paper proposes a novel multithreaded hybrid framework comprising of NegNodesets and N-list structure that uses the multicore feature of today’s processors. While NegNodesets offer a concise representation of itemsets, N-lists rely on List intersection thereby speeding up the mining process. To optimize the extraction of frequent items a hash-based algorithm has been designed here to extract the resultant set of frequent items which further enhances the novelty of the framework.</span></p>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.