Abstract

A software architecture is presented that supports faithful, modular and efficient implementation of a set of concurrent switching sequences in distribution substations specified through Petri nets (PNs). The keys providing speed, modularity and correct PN mapping are a multitasking kernel, a token-player algorithm plus a predicate database, and source code compactness achieved by coloring the PN. The complete software system was implemented on a laboratory prototype similar to an RTU and tested on a distribution substation simulator, exhibiting real-time efficiency and user-friendly man-machine interface. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.