Abstract

Natural disasters are reported globally, and one source of severe damage to cities is flooding caused by locally heavy rain. Sharing of local weather information can save lives. However, it is difficult to collect local weather information in real-time because such data collection requires bulky, expensive sensors. For local, real-time monitoring of heavy rain and wind, a sensor system should be simple and low-cost so that it can be attached to a variety of surfaces, including roofs, vehicles, and umbrellas. To develop simple, low-cost multitasking sensors located on nonplanar surfaces, a flexible rain sensor to monitor waterdrop volume and wind velocity is devised. To monitor both simultaneously, a laser-induced graphene-based superhydrophobic conductive film is introduced. Using the superhydrophobic surface, water dynamics are measured when waterdrops collide with the sensor surface, and obtained time-series data are processed using "reservoir computing" to extract the volume and velocity from a single sensor as multitasking electronics. As a proof-of-concept, it is shown that the sensor measures continuous, long-term volume and wind-change dynamics. The results demonstrate feasibility of multitasking electronics with reservoir computing to reduce sensor integration complexity with low power consumption for both sensor and signal processing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.