Abstract

We consider a multitask estimation problem where nodes in a network are divided into several connected clusters, with each cluster performing a least-mean-squares estimation of a different random parameter vector. Inspired by the adapt-then-combine diffusion strategy, we propose a multitask diffusion strategy whose mean stability can be ensured whenever individual nodes are stable in the mean, regardless of the inter-cluster cooperation weights. In addition, the proposed strategy is able to achieve an asymptotically unbiased estimation, when the parameters have same mean. We also develop an inter-cluster cooperation weights selection scheme that allows each node in the network to locally optimize its inter-cluster cooperation weights. Numerical results demonstrate that our approach leads to a lower average steady-state network mean-square deviation, compared with using weights selected by various other commonly adopted methods in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.