Abstract

Ultra-wideband (UWB) multiple-input multiple-output (MIMO) through-wall radar is widely used in through-wall human target detection for its good penetration characteristics and resolution. However, in actual detection scenarios, weak target masking and adjacent target unresolving will occur in through-wall imaging due to factors such as resolution limitations and differences in human reflectance, which will reduce the probability of target detection. An improved U-Net model is proposed in this paper to improve the detection probability of through-wall targets. In the proposed detection method, a ResNet module and a squeeze-and-excitation (SE) module are integrated in the traditional U-Net model. The ResNet module can reduce the difficulty of feature learning and improve the accuracy of detection. The SE module allows the network to perform feature recalibration and learn to use global information to emphasize useful features selectively and suppress less useful features. The effectiveness of the proposed method is verified via simulations and experiments. Compared with the order statistics constant false alarm rate (OS-CFAR), the fully convolutional networks (FCN) and the traditional U-Net, the proposed method can detect through-wall weak targets and adjacent unresolving targets effectively. The detection precision of the through-wall target is improved, and the missed detection rate is minimized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.