Abstract

In muscle-computer interface (MCI), deep learning is a promising technology to build-up classifiers for recognizing gestures from surface electromyography (sEMG) signals. Motivated by the observation that a small group of muscles play significant roles in specific hand movements, we propose a multi-stream convolutional neural network (CNN) framework to improve the recognition accuracy of gestures by learning the correlation between individual muscles and specific gestures with a “divide-and-conquer” strategy. Its pipeline consists of two stages, namely the multi-stream decomposition stage and the fusion stage. During the multi-stream decomposition stage, it first decomposes the original sEMG image into equal-sized patches (streams) by the layout of electrodes on muscles, and for each stream, it independently learns representative features by a CNN. Then during the fusion stage, it fuses the features learned from all streams into a unified feature map, which is subsequently fed into a fusion network to recognize gestures. Evaluations on three benchmark sEMG databases showed that our proposed multi-stream CNN framework outperformed the state-of-the-arts on sEMG-based gesture recognition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call