Abstract
When learning from very large databases, the reduction of complexity is extremely important. Two extremes of making knowledge discovery in databases (KDD) feasible have been put forward. One extreme is to choose a very simple hypothesis language, thereby being capable of very fast learning on real-world databases. The opposite extreme is to select a small data set, thereby being able to learn very expressive (first-order logic) hypotheses. A multistrategy approach allows one to include most of these advantages and exclude most of the disadvantages. Simpler learning algorithms detect hierarchies which are used to structure the hypothesis space for a more complex learning algorithm. The better structured the hypothesis space is, the better learning can prune away uninteresting or losing hypotheses and the faster it becomes. We have combined inductive logic programming (ILP) directly with a relational database management system. The ILP algorithm is controlled in a model-driven way by the user and in a data-driven way by structures that are induced by three simple learning algorithms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.