Abstract

For linear regression models, we propose and study a multi-step kernel density-based estimator that is adaptive to unknown error distributions. We establish asymptotic normality and almost sure convergence. An efficient EM algorithm is provided to implement the proposed estimator. We also compare its finite sample performance with five other adaptive estimators in an extensive Monte Carlo study of eight error distributions. Our method generally attains high mean-square-error efficiency. An empirical example illustrates the gain in efficiency of the new adaptive method when making statistical inference about the slope parameters in three linear regressions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.