Abstract
Abstract In this paper we report on the construction principle and performance of an amperometric 3-enzyme sensor for sucrose based on crystalline bacterial cell surface layers (S-layers) as immobilization matrix for the biological components. Isoporous, crystalline surface layers (S-layers) have been identified as outermost cell envelope layer in many bacteria. Since they are composed of identical protein or glycoprotein subunits with functional groups in well defined positions and orientations, they represent ideal matrices for the controlled and reproducible immobilization of functional macromolecules, as required for the development of biosensors. Apart from single enzyme sensors, which were described earlier, a strikingly simple method for the assembly and optimization of multistep systems was developed. For the fabrication of an amperometric sucrose sensor invertase, mutarotase and glucose oxidase were individually immobilized on S-layer fragments isolated from Clostridium thermohydrosulfuricum L111...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.