Abstract

Real-time magnetic resonance imaging (RT-MRI) of human speech production is enabling significant advances in speech science, linguistics, bio-inspired speech technology development, and clinical applications. Easy access to RT-MRI is however limited, and comprehensive datasets with broad access are needed to catalyze research across numerous domains. The imaging of the rapidly moving articulators and dynamic airway shaping during speech demands high spatio-temporal resolution and robust reconstruction methods. Further, while reconstructed images have been published, to-date there is no open dataset providing raw multi-coil RT-MRI data from an optimized speech production experimental setup. Such datasets could enable new and improved methods for dynamic image reconstruction, artifact correction, feature extraction, and direct extraction of linguistically-relevant biomarkers. The present dataset offers a unique corpus of 2D sagittal-view RT-MRI videos along with synchronized audio for 75 participants performing linguistically motivated speech tasks, alongside the corresponding public domain raw RT-MRI data. The dataset also includes 3D volumetric vocal tract MRI during sustained speech sounds and high-resolution static anatomical T2-weighted upper airway MRI for each participant.

Highlights

  • Background & SummaryHuman upper airway functions such as swallowing, breathing, and speech production are the result of a well-coordinated choreography of various mobile soft tissue and muscular structures such as the tongue, lips, and velum, as well as bony structures such as the plate, mandible, and hyoid[1,2]

  • The complexity and sophistication of human speech production poses a multitude of open research questions with implications for linguistics and speech science, as well as clinical and technological applications, creating a demand for improved methods for observing and measuring the vocal instrument in action[3,4]

  • Real-Time Magnetic Resonance Imaging (RT-MRI) with concurrent audio recording has emerged as an imaging modality that can provide new insights into speech production with all its inherent systematicities and variation between languages, contexts, and individuals[1,3,5,6]

Read more

Summary

Background & Summary

Human upper airway functions such as swallowing, breathing, and speech production are the result of a well-coordinated choreography of various mobile soft tissue and muscular structures such as the tongue, lips, and velum, as well as bony structures such as the plate, mandible, and hyoid[1,2]. Real-Time Magnetic Resonance Imaging (RT-MRI) with concurrent audio recording has emerged as an imaging modality that can provide new insights into speech production with all its inherent systematicities and variation between languages, contexts, and individuals[1,3,5,6]. This technique has the unique advantage of monitoring the complete vocal tract safely and non-invasively at relatively high spatial and temporal resolution. Applications of RT-MRI span multiple realms of research including study of: (i) phonetic and phonological phenomena, (ii) spoken language acquisition and breakdown, including the assessment and remediation of speech disorders[1,3]; (iii)

The availability of raw data No No No No No
Methods
Discussion about topics
33 Repetition of the above tasks
Code availability
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call