Abstract

The osmotic virial equation was used to predict osmolalities of solutions of interest in biology. The second osmotic virial coefficients, Bi, account for the interactions between identical solute molecules. For multisolute solutions, the second osmotic virial cross coefficient, Bij, describes the interaction between two different solutes. We propose to use as a mixing rule for the cross coefficient the arithmetic average of the second osmotic virial coefficients of the pure species, so that only binary solution measurements are required for multisolute solution predictions. Single-solute data were fit to obtain the osmotic virial coefficients of the pure species. Using those coefficients with the proposed mixing rule, predictions were made of ternary solution osmolality, without any fitting parameters. This method is shown to make reasonably accurate predictions for three very different ternary aqueous solutions: (i) glycerol + dimethyl sulfoxide + water, (ii) hemoglobin + an ideal, dilute solute + water, and (iii) bovine serum albumin + ovalbumin + water.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.