Abstract

The rational QZ method generalizes the QZ method by implicitly supporting rational subspace iteration. In this paper we extend the rational QZ method by introducing shifts and poles of higher multiplicity in the Hessenberg pencil, which is a pencil consisting of two Hessenberg matrices. The result is a multishift, multipole iteration on block Hessenberg pencils which allows one to stick to real arithmetic for a real input pencil. In combination with optimally packed shifts and aggressive early deflation as an advanced deflation technique we obtain an efficient method for the dense generalized eigenvalue problem. In the numerical experiments we compare the results with state-of-the-art routines for the generalized eigenvalue problem and show that we are competitive in terms of speed and accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.