Abstract
Primary gustatory cortex (GC) is connected (both mono- and polysynaptically) to primary olfactory (piriform) cortex (PC)-connections that might be hypothesized to underlie the construction of a "flavor" percept when both gustatory and olfactory stimuli are present. Here we use multisite electrophysiology and optical inhibition of GC neurons (GCx, produced via infection with ArchT) to demonstrate that, indeed, during gustatory stimulation, taste-selective information is transmitted from GC to PC. We go on to show that these connections impact olfactory processing even in the absence of gustatory stimulation: GCx alters PC responses to olfactory stimuli presented alone, enhancing some and eliminating others, despite leaving the path from nasal epithelium to PC intact. Finally, we show the functional importance of this latter phenomenon, demonstrating that GCx renders rats unable to properly recognize odor stimuli. This sequence of findings suggests that sensory processing may be more intrinsically integrative than previously thought.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.