Abstract
ObjectivesThe aim of this study was to develop and validate a device-based diagnostic algorithm to predict heart failure (HF) events. BackgroundHF involves costly hospitalizations with adverse impact on patient outcomes. The authors hypothesized that an algorithm combining a diverse set of implanted device-based sensors chosen to target HF pathophysiology could detect worsening HF. MethodsThe MultiSENSE (Multisensor Chronic Evaluation in Ambulatory Heart Failure Patients) study enrolled patients with investigational chronic ambulatory data collection via implanted cardiac resynchronization therapy defibrillators. HF events (HFEs), defined as HF admissions or unscheduled visits with intravenous treatment, were independently adjudicated. The development cohort of patients was used to construct a composite index and alert algorithm (HeartLogic) combining heart sounds, respiration, thoracic impedance, heart rate, and activity; the test cohort was sequestered for independent validation. The 2 coprimary endpoints were sensitivity to detect HFE >40% and unexplained alert rate <2 alerts per patient-year. ResultsOverall, 900 patients (development cohort, n = 500; test cohort, n = 400) were followed for up to 1 year. Coprimary endpoints were evaluated using 320 patient-years of follow-up data and 50 HFEs in the test cohort (72% men; mean age 66.8 ± 10.3 years; New York Heart Association functional class at enrollment: 69% in class II, 25% in class III; mean left ventricular ejection fraction 30.0 ± 11.4%). Both endpoints were significantly exceeded, with sensitivity of 70% (95% confidence interval [CI]: 55.4% to 82.1%) and an unexplained alert rate of 1.47 per patient-year (95% CI: 1.32 to 1.65). The median lead time before HFE was 34.0 days (interquartile range: 19.0 to 66.3 days). ConclusionsThe HeartLogic multisensor index and alert algorithm provides a sensitive and timely predictor of impending HF decompensation. (Evaluation of Multisensor Data in Heart Failure Patients With Implanted Devices [MultiSENSE]; NCT01128166)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.