Abstract
Mathematical modelling of surface roughness is of significant interest for a variety of modern applications, including, but not limited to, tribology and optics. The most popular approaches to modelling rough surfaces are reviewed and critically examined. By providing counterexamples, it is shown that approaches based solely on the use of the fractal geometry or power spectral density have many drawbacks. It is recommended to avoid these approaches. It is argued that the surfaces that cannot be distinguished from the original rough surfaces can be synthesised by employing the concept of the representative elementary pattern of roughness (REPR), i.e., the smallest interval (or area) of a rough surface that statistically represents the whole surface. The REPR may be extracted from surface measurement data by the use of the “moving window” technique in combination with the Kolmogorov–Smirnov statistic.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.