Abstract

In this article, a multiscale simulation method of polymer melt injection molding filling flow is established by combining an improved smoothed particle hydrodynamics method and clustered fixed slip-link model. The proposed method is first applied to the simulation of HDPE melt in a classic Poiseuille flow case, and then two high-speed and high-viscosity injection molding flow cases in two simple long 2D rectangular cavities with and without a circular obstacle, respectively, are analyzed. For each case, the macro velocity results, and the micro average number of entanglements Zave and orientation degree S results are demonstrated and discussed, and the changing trends of Zave and S are analyzed. The results of the two injection molding cases are compared, and the influence of the obstacle on the injection flow at both the macro and micro levels is analyzed. Furthermore, based on the multiscale results, reason of some structural features and defects in injection molded products are analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.