Abstract
Direct representation of the free surface in ocean circulation models leads to a number of computational difficulties that are due to the fast time scales associated with free-surface waves. These fast time scales generally result in severe time-step restrictions when the free surface is advanced using an explicit scheme and may result in large phase errors when the free surface is treated implicitly with a large time step. A multiple-scale analysis of the shallow-water equations is used to analyze this stiffness and to guide the construction of a computational methodology that overcomes the associated difficulties. Specifically, we explore a class of fractional step methods that utilize coarsened grids in the propagation of long-wave data. The behavior of the corresponding schemes is examined in detail in light of one-dimensional model problems, based on finite-difference or spectral-element discretizations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.