Abstract
Abstract The objectives of Part VI of this series of papers are to (a) simulate the finescale features of Hurricane Andrew (1992) using a cloud-resolving grid length of 2 km, (b) diagnose the formation of small-scale wind streaks, and (c) perform sensitivity experiments of varying surface fluxes on changes in storm inner-core structures and intensity. As compared to observations and a previous 6-km model run, the results show that a higher-resolution explicit simulation could produce significant improvements in the structures and evolution of the inner-core eyewall and spiral rainbands, and in the organization of convection. The eyewall becomes much more compact and symmetric with its width decreased by half, and the radius of maximum wind is reduced by ∼10 to 20 km. A zone of deep and intense potential vorticity (PV) is formed at the edge of the eye. A ring of maximum PV is collocated in regions of maximum upward motion in the eyewall and interacts strongly with the eyewall convection. The convective cor...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.